```
By the Ibukiyama-Kitayama dimension formula,
```

By the Ibukiyama-Kitayama dimension formula, $dim(S_4(K(274))) = 191$

N = 274 = 2 * 137

q = 5 for TraceDown

By the Skoruppa-Zagier dimension formula and Jacobi restriction, the lift dimension of $S_4(K(274))^+$ is 52 the nonlift dimension of $S_4(K(274))^+$ is heuristically 112 $\dim(S_4(K(274))^+)$ thus is heuristically 164

 $\dim(S_4(K(274))^+)$ thus is heuristically 104 $\dim(S_4(K(274))^-)$ is heuristically 27

 $\label{eq:cusp} \mbox{dim}(\mbox{$J_{2,274}cusp}) \ = \ 7 \ (\mbox{Skoruppa-Zagier}) \mbox{, so need to span to within 6 dimensions}$

After TD(Grit($J_{4,1370}^{cusp}$)) and (Grit($J_{2,274}^{cusp}$))^2, spanned rank in $S_{4}(K(274))^+$ is 162 spanned rank in $S_{4}(K(274))^-$ is 0

Hecke operators applied: $\{\{\{2, 2\}\}, \{\{2, 2\}, \{2, 1\}\}\}$ After Hecke spreading, spanned rank in $S_4(K(274))^-$ is 19

After Borcherds products, spanned rank in $S_4(K(274))^-$ is 24

Final spanned rank in $S_4(K(274))^+$ is 162 Final spanned rank in $S_4(K(274))^-$ is 24

 $S_2(K(274))^+$ is determined by Jacobi restriction and the H4Nd1(3,+) test $(dim(H_4(274,3,1)^+) <= 5$ and this is less than $dim(J_{2,274}^{2,274})^+ = 8)$ $S_2(K(274))^- = 0$ by Jacobi restriction and the H4Nd1(1,-) test

 $(\dim(H_4(274,1,1)^-) <= 6 \text{ and this is less than } \dim(J_{2,274}^{cusp}) = 7)$

So $S_2(K(274)) = Grit(J_{2,274}^{cusp})$ (dimension 7)